On Domains of Universal Machines

Ludwig Staiger

Martin-Luther-Universität Halle-Wittenberg

joint work with Cristian S. Calude, André Nies and Frank Stephan

4th Conference on Logic, Computability and Randomness
June 29 - July 3, 2009, Marseille, France
Main References

1. Calude, C.S. and Staiger, L.,
 On universal computably enumerable prefix codes,

2. Calude, C.S., Nies, A., Staiger, L. and Stephan, F.,
 Universal Recursively Enumerable Sets of Strings,
Outline

1. Prefix Codes
2. Description complexity
3. Universal codes
4. Density
5. Spectral properties
6. Plain machines
Fix an alphabet $X = \{0, \ldots, r - 1\}$, $r \geq 2$, and denote by X^* the set of finite strings (words) on X.

Definition (Prefix Code)

A subset V of X^ is called a *prefix code* provided $w \sqsubseteq v$ and $w, v \in V$ imply $w = v$.*
Fix an alphabet \(X = \{0, \ldots, r-1\} \), \(r \geq 2 \), and denote by \(X^* \) the set of finite strings (words) on \(X \).

Definition (Prefix Code)

A subset \(V \subseteq X^* \) is called a **prefix code** provided \(w \sqsubseteq v \) and \(w, v \in V \) imply \(w = v \).

Proposition (KRAFT-MCMILLAN inequality)

Every (prefix) code \(V \subseteq X^* \) satisfies \(\sum_{w \in V} r^{-|w|} \leq 1 \).
Prefix Maximality

Definition (Prefix Maximality)

\[V \subseteq X^* \text{ is a } \textbf{prefix maximal} \text{ code provided } V \text{ is a prefix code and for every prefix code } W \subseteq X^*, \ V \subseteq W \text{ implies } W = V. \]
Prefix Maximality

Definition (Prefix Maximality)

A code $V \subseteq X^*$ is a **prefix maximal** code provided V is a prefix code and for every prefix code $W \subseteq X^*$, $V \subseteq W$ implies $W = V$.

Fact

A prefix code $V \subseteq X^*$ is prefix maximal if and only if for every $u \in X^*$ there is a $w \in V$ such that $u \sqsubseteq w$ or $w \sqsubseteq u$.
Prefix Maximality

Definition (Prefix Maximality)

$V \subseteq X^*$ is a **prefix maximal** code provided V is a prefix code and for every prefix code $W \subseteq X^*$, $V \subseteq W$ implies $W = V$.

Fact

A prefix code $V \subseteq X^*$ is prefix maximal if and only if for every $u \in X^*$ there is a $w \in V$ such that $u \sqsubseteq w$ or $w \sqsubseteq u$.

Fact (Sufficient condition)

A prefix code V is prefix maximal if $\sum_{w \in V} r^{-|w|} = 1$.
KRAFT’s construction

Theorem (KRAFT’s construction)

Let \(s : \mathbb{N} \rightarrow \mathbb{N} \) be a function such that \(s(0) = 0 \) and \(\sum_{n \in \mathbb{N}} s(n) \cdot r^{-n} \leq 1 \). Then there is a prefix code \(V \subseteq X^* \) such that

\[
\left| \{ w : w \in V \land |w| = n \} \right| = s(n).
\]
Theorem (KRAFT’s construction)

Let $s : \mathbb{N} \rightarrow \mathbb{N}$ be a function such that $s(0) = 0$ and
$\sum_{n \in \mathbb{N}} s(n) \cdot r^{-n} \leq 1$. Then there is a prefix code $V \subseteq X^*$ such that

$$\left| \left\{ w : w \in V \land |w| = n \right\} \right| = s(n).$$

Observe that $\sum_{n \in \mathbb{N}} s(n) = |V|$.
KRAFT’s construction

Theorem (KRAFT’s construction)

Let $s : \mathbb{N} \to \mathbb{N}$ be a function such that $s(0) = 0$ and
$\sum_{n \in \mathbb{N}} s(n) \cdot r^{-n} \leq 1$. Then there is a prefix code $V \subseteq X^*$ such that

$$\left| \left\{ w : w \in V \land |w| = n \right\} \right| = s(n).$$

Observe that $\sum_{n \in \mathbb{N}} s(n) = |V|$.

Theorem (Maximality of infinite prefix codes)

Let $s : \mathbb{N} \to \mathbb{N}$ be a function such that $\sum_{n \in \mathbb{N}} s(n) \cdot r^{-n} \leq 1$ and
$\sum_{n \in \mathbb{N}} s(n) = \infty$. Then there is a prefix maximal code $V \subseteq X^*$ such that

$$\left| \left\{ w : w \in V \land |w| = n \right\} \right| = s(n).$$
Theorem (Kraft-Chaitin)

Let \(s : \mathbb{N} \to \mathbb{N} \) be a left computable (approximable from below) function such that \(s(0) = 0 \) and \(\sum_{n \in \mathbb{N}} s(n) \cdot r^{-n} \leq 1 \). Then there is a computably enumerable prefix code \(V \subseteq X^* \) such that

\[
\left| \{ w : w \in V \land |w| = n \} \right| = s(n).
\]
Theorem (Kraft-Chaitin)

Let $s : \mathbb{N} \rightarrow \mathbb{N}$ be a left computable (approximable from below) function such that $s(0) = 0$ and $\sum_{n \in \mathbb{N}} s(n) \cdot r^{-n} \leq 1$. Then there is a computably enumerable prefix code $V \subseteq X^*$ such that

$$\left| \{ w : w \in V \land |w| = n \} \right| = s(n).$$

Corollary

If, moreover, $s : \mathbb{N} \rightarrow \mathbb{N}$ is a computable function then V is also computable.
Definition (Description complexity K_φ)

Let $\varphi : \subseteq X^* \to X^*$ be a partial computable function.

$$K_\varphi(w) := \inf\{|\pi| : \varphi(\pi) = w\}$$

Definition (Plain or Simple universal machine)

A machine (mapping) $\mathcal{U}_S : \subseteq X^* \to X^*$ is called **universal** if and only if for every partial computable mapping $\varphi : \subseteq X^* \to X^*$ there is a constant c_φ such that

$$\forall w (K_\varphi(w) \leq K_{\mathcal{U}_S}(w) + c_\varphi).$$
Description complexity: plain complexity

Definition (Description complexity K_φ)

Let $\varphi : \subseteq X^* \rightarrow X^*$ be a partial computable function.

$$K_\varphi(w) := \inf\{|\pi| : \varphi(\pi) = w\}$$

Definition (Plain or Simple universal machine)

A machine (mapping) $U_S : \subseteq X^* \rightarrow X^*$ is called universal if and only if for every partial computable mapping $\varphi : \subseteq X^* \rightarrow X^*$ there is a constant c_φ such that

$$\forall w (K_\varphi(w) \leq K_{U_S}(w) + c_\varphi).$$

Definition (Plain description complexity)

$$C(w) := \min\{|\pi| : U_S(\pi) = w\}$$
Description complexity: prefix-free complexity

Definition (Prefix-free universal machine)

A prefix-free machine (mapping) $\mathcal{U}_P : \subseteq X^* \rightarrow X^*$ is called **universal** if and only if

1. $\text{dom}(\mathcal{U}_P)$ is prefix-free, and

2. for every partial computable mapping $\phi : \subseteq X^* \rightarrow X^*$ with prefix-free domain $\text{dom}(\phi)$ there is a constant c_ϕ such that

$$\forall w (K_\phi(w) \leq K_{\mathcal{U}_P}(w) + c_\phi).$$
Description complexity: prefix-free complexity

Definition (Prefix-free universal machine)

A prefix-free machine (mapping) \(\mathcal{U}_P : \subseteq X^* \rightarrow X^* \) is called **universal** if and only if

1. \(\text{dom}(\mathcal{U}_P) \) is prefix-free, and
2. for every partial computable mapping \(\phi : \subseteq X^* \rightarrow X^* \) with prefix-free domain \(\text{dom}(\phi) \) there is a constant \(c_\phi \) such that

\[
\forall w \left(K_\phi(w) \leq K_{\mathcal{U}_P}(w) + c_\phi \right).
\]

Definition (Prefix-free description complexity)

\[
H(w) := \min \{|\pi| : \mathcal{U}_P(\pi) = w\}
\]
Numbering words

Definition (Quasi-lexicographical order of \(\{0, \ldots, r - 1\}^*\))

\[w <_{ql} v :\iff |w| < |v| \lor (|w| = |v| \rightarrow 0.w <_{real} 0.v) \]
Numbering words

Definition (Quasi-lexicographical order of \{0, \ldots, r - 1\}^*)

\[w <_{ql} v \iff |w| < |v| \lor (|w| = |v| \rightarrow 0.w <_{\text{real}} 0.v) \]

Other names: *Length-lexicographical order, military order*
Numbering words

Definition (Quasi-lexicographical order of \(\{0, \ldots, r-1\}^* \))

\[w <_{ql} v : \iff |w| < |v| \lor (|w| = |v| \rightarrow 0.w <_{\text{real}} 0.v) \]

Other names: *Length-lexicographical order, military order*

Not to confuse with the lexicographical order:

\[\text{e} <_{\text{lex}} 0 <_{\text{lex}} 00 <_{\text{lex}} \cdots <_{\text{lex}} 0^i <_{\text{lex}} \cdots \]

\[\cdots <_{\text{lex}} 0^l1 <_{\text{lex}} 0^l10 <_{\text{lex}} \cdots <_{\text{lex}} 01 <_{\text{lex}} \cdots <_{\text{lex}} 1 <_{\text{lex}} \cdots \]
Numbering words

Definition (Quasi-lexicographical order of \(\{0, \ldots, r - 1\}\)^*)

\[w <_{ql} v :\iff |w| < |v| \lor (|w| = |v| \rightarrow 0.w <_{real} 0.v) \]

Other names: *Length-lexicographical order, military order*

Not to confuse with the lexicographical order:

\[e <_{lex} 0 <_{lex} 00 <_{lex} \cdots <_{lex} 0^i <_{lex} \cdots \]

\[\cdots <_{lex} 0^l 1 <_{lex} 0^l 10 <_{lex} \cdots <_{lex} 01 <_{lex} \cdots <_{lex} 1 <_{lex} \cdots \]

Definition (Complexity of natural numbers)

\[K_\varphi(n) := K_\varphi(\text{n-th word in } X^* \text{ w.r.t. } \leq_{ql}) \]
Definition

We say that a computably enumerable prefix code $V \subseteq X^$ is universal if there is a universal prefix-free machine \emptyset such that $V \supseteq \text{dom}(\emptyset)$.*
 Universal c.e. prefix codes

We say that a computably enumerable prefix code $V \subseteq X^*$ is **universal** if there is a universal prefix-free machine \mathcal{U} such that $V \supseteq \text{dom}(\mathcal{U})$.

- Characterise universal c.e. prefix codes.
Universal c.e. prefix codes

Definition

We say that a computably enumerable prefix code $V \subseteq X^*$ is universal if there is a universal prefix-free machine \mathcal{U} such that $V \supseteq \text{dom}(\mathcal{U})$.

- Characterise universal c.e. prefix codes.
- Are universal c.e. prefix codes computable?
Universal c.e. prefix codes

Definition

We say that a computably enumerable prefix code $V \subseteq X^*$ is **universal** if there is a universal prefix-free machine \mathcal{U} such that $V \supseteq \text{dom}(\mathcal{U})$.

- Characterise universal c.e. prefix codes.
- Are universal c.e. prefix codes computable?
- How big (set-theoretic, information-theoretic) are universal c.e. prefix codes?
Universal c.e. prefix codes

Definition

We say that a computably enumerable prefix code $V \subseteq X^*$ is **universal** if there is a universal prefix-free machine \mathcal{U} such that $V \supseteq \text{dom}(\mathcal{U})$.

- Characterise universal c.e. prefix codes.
- Are universal c.e. prefix codes computable?
- How big (set-theoretic, information-theoretic) are universal c.e. prefix codes?
- Are universal c.e. prefix codes necessarily domains of prefix-free universal machines?
Let $V \subseteq X^*$ be a c.e. prefix code. Then, the following statements are equivalent:

1. The set V is a universal c.e. prefix code.

2. For every c.e. prefix code $D \subseteq X^*$ there exist a partial computable one-one function $\varphi : \subseteq X^* \rightarrow X^*$ and a constant $k \in \mathbb{N}$ such that:

 a. $D \subseteq \text{dom}(\varphi)$, $\varphi(D) \subseteq V$, and

 b. $|\varphi(u)| \leq |u| + k$, for every $u \in \text{dom}(\varphi)$.
For the case $V = \text{dom}(\mathcal{U})$, where \mathcal{U} is a prefix-free universal machine we have:

Corollary

For every c.e. prefix code $D \subseteq X^*$ and every universal prefix machine \mathcal{U} there are a one-one partial computable function $\varphi : \subseteq X^* \rightarrow X^*$ and a constant $k \in \mathbb{N}$ such that:

a. $D \subseteq \text{dom}(\varphi)$, $\varphi(D) \subseteq \text{dom}(\mathcal{U})$,

b. $|\varphi(u)| \leq |u| + k$, for all $u \in D$, and

c. $\mathcal{U}(\varphi(u)) = u$, for all $u \in D$.
Computability and set-theoretical maximality

Theorem (Nies, Calude & St.)

No universal c.e. prefix code $V \subseteq X^*$ is computable.
Computability and set-theoretical maximality

Theorem (Nies, Calude & St.)

No universal c.e. prefix code $V \subseteq X^*$ is computable.

Lemma

If $V \subseteq X^*$ is a c.e. prefix maximal code, then V is computable.
Computability and set-theoretical maximality

Theorem (Nies, Calude & St.)

No universal c.e. prefix code $V \subseteq X^$ is computable.*

Lemma

If $V \subseteq X^$ is a c.e. prefix maximal code, then V is computable.*

Corollary

No universal c.e. prefix code is a prefix maximal code.
Computability and set-theoretical maximality

Theorem (Nies, Calude & St.)

No universal c.e. prefix code \(V \subseteq X^* \) is computable.

Lemma

If \(V \subseteq X^* \) is a c.e. prefix maximal code, then \(V \) is computable.

Corollary

No universal c.e. prefix code is a prefix maximal code.

However:

There are computable prefix codes which are not contained in a computable prefix maximal code.
Definition (Spectrum Function)

Let $L \subseteq X^*$. Then

$$s_L(n, c) := \left| \{ w : w \in L \land n \leq |w| \leq n + c \} \right|$$

is referred to as the spectrum function of L.
Spectrum Function

Definition (Spectrum Function)

Let $L \subseteq X^*$. Then

$$s_L(n, c) := \left| \{ w : w \in L \land n \leq |w| \leq n + c \} \right|$$

is referred to as the **spectrum function** of L.

Specials cases

- $s_L(n) := s_L(n, 0)$ is also referred to as the **structure function** of the language $L \subseteq X^*$ [Chomsky and Miller ’58].
- $C_L(n) := s_L(0, n)$ is also referred to as the **census function** of the language $L \subseteq X^*$.
Fact

If \(W \subseteq X^* \) is computably enumerable (computable) then \(s_W \) is a left computable (computable) function, and if \(W \) is computably enumerable and \(s_W \) is a computable function then \(W \) is also computable.
Fact

If $W \subseteq X^*$ is computably enumerable (computable) then s_W is a left computable (computable) function, and if W is computably enumerable and s_W is a computable function then W is also computable.

Fact (Uniform embedding)

If $W, W' \subseteq X^*$ are computably enumerable and if there is a $c \in \mathbb{N}$ such that $s_W(n, c) \leq s_{W'}(n, c)$ for all $n \in \mathbb{N}$ then there is a one-to-one partial computable function $\varphi : W \rightarrow W'$ such that $||\varphi(w)|| - |w| | \leq c$ for all $w \in W$.
Fact

If \(V \subseteq X^* \) is a (prefix) code then
\[
\lim_{n \to \infty} r^{-n} \cdot s_V(0, n) = 0.
\]

Definition (Entropy)

\[
H_L := \inf \left\{ \alpha : \alpha \geq 0 \land \sum_{w \in L} r^{-\alpha \cdot |w|} < \infty \right\} = \limsup_{n \to \infty} \frac{\log_r (1 + s_L(0, n))}{n}
\]
Entropy and Logarithmic Density

Fact

If $V \subseteq X^*$ is a (prefix) code then

$$\lim_{n \to \infty} r^{-n} \cdot s_V(0, n) = 0.$$

Definition (Entropy)

$$H_L := \inf \left\{ \alpha : \alpha \geq 0 \land \sum_{w \in L} r^{-\alpha \cdot |w|} < \infty \right\} = \limsup_{n \to \infty} \frac{\log_r (1 + s_L(0, n))}{n}$$

Definition (Logarithmic Density)

$$H_L := \liminf_{n \to \infty} \frac{\log_r (1 + s_L(0, n))}{n}$$
Entropy and Logarithmic Density: Properties

Fact

\[
0 \leq H_L \leq H_L \leq 1, \\
H_L \leq H_{L'}, \quad \text{if } L \subseteq L', \quad \text{and} \\
H_{L \cup L'} = \max\{H_L, H_{L'}\}
\]
Fact

\[
0 \leq H_L \leq H_L' \leq 1, \\
H_L \leq H_L', \quad \text{if } L \subseteq L', \quad \text{and} \\
H_{L \cup L'} = \max\{H_L, H_L'\}
\]

Lemma

If \(V \subseteq X^* \) is a universal c.e. prefix code then \(\sum_{w \in L} r^{-|w|} < 1 \), \\
\(\sum_{w \in L} r^{-\alpha \cdot |w|} = \infty \) for \(\alpha < 1 \) and \(H_V = 1 \).
Entropy and Logarithmic Density: Properties

Fact

\[0 \leq H_L \leq H_L \leq 1, \]
\[H_L \leq H_{L'}, \quad \text{if } L \subseteq L', \quad \text{and} \]
\[H_{L \cup L'} = \max\{H_L, H_{L'}\} \]

Lemma

If \(V \subseteq X^* \) *is a universal c.e. prefix code then* \(\sum_{w \in L} r^{-|w|} < 1, \)
\(\sum_{w \in L} r^{-\alpha \cdot |w|} = \infty \) *for* \(\alpha < 1 \) *and* \(H_V = 1. \)

However:

There are also computable prefix codes \(V \subseteq X^* \) which satisfy
\(\sum_{w \in L} r^{-|w|} < 1, \sum_{w \in L} r^{-\alpha \cdot |w|} = \infty \) *for* \(\alpha < 1 \) *and* \(H_V = 1. \)
SOLOVAY’s universal prefix machine \mathcal{T}

Proposition

Let \mathcal{T} be SOLOVAY’s universal prefix machine. Then there are an $n_0 \in \mathbb{N}$ and a $d \in \mathbb{N}$ such that

$$r^{n-H(n)-d} \leq s_{dom}(\mathcal{T})(n) \leq r^{n-H(n)+d} \text{ for all } n \geq n_0.$$
Proposition

Let \mathcal{T} be SOLOVAY’s universal prefix machine. Then there are an $n_0 \in \mathbb{N}$ and a $d \in \mathbb{N}$ such that

$$r^{n-H(n)-d} \leq s_{\text{dom}(\mathcal{T})}(n) \leq r^{n-H(n)+d} \text{ for all } n \geq n_0.$$

Lemma

Let $W \subseteq X^*$ be computably enumerable and $\sum_{w \in W} r^{-|w|} < \infty$. Then there is a $d \in \mathbb{N}$ such that

$$s_W(0, n) \leq r^{n-H(n)+d} \text{ for all } n \in \mathbb{N}.$$
Theorem (Universal c.e. prefix codes)

Let $V \subseteq X^*$ be a computably enumerable prefix code. Then V is a universal c.e. prefix code if and only if there are $c, d \in \mathbb{N}$ such that

$$r^{n - H(n) - d} \leq s_V(n, c) \text{ for all } n \in \mathbb{N}.$$
Theorem (Universal c.e. prefix codes)

Let $V \subseteq X^*$ be a computably enumerable prefix code. Then V is a universal c.e. prefix code if and only if there are $c, d \in \mathbb{N}$ such that

$$r^{n-H(n)-d} \leq s_V(n, c) \text{ for all } n \in \mathbb{N}.$$

Theorem (Domains of universal prefix-free machines)

Let $W \subseteq X^*$ be a computably enumerable prefix code. Then W is the domain of a universal prefix-free machine \mathcal{U} if and only if there is a constant $c \in \mathbb{N}$ such that

$$H(\langle n, s_W(n, c) \rangle) \geq n \text{ for all } n \in \mathbb{N}.$$
Example

There is a universal c.e. prefix code which is not the domain of a universal prefix-free machine.
Example

There is a universal c.e. prefix code which is not the domain of a universal prefix-free machine.

Construction: Let \mathcal{U} be a universal prefix-free machine with
\[\sum_{w \in \text{dom}(U)} r^{-|w|} < r^{-1} \]
and let
\[s(n) := \begin{cases} 0, & \text{if } s_{\text{dom}(\mathcal{U})}(n) = 0, \\ r^\lceil \log_r s_{\text{dom}(\mathcal{U})}(n) \rceil, & \text{otherwise.} \end{cases} \]
Example

There is a universal c.e. prefix code which is not the domain of a universal prefix-free machine.

Construction: Let U be a universal prefix-free machine with
$\sum_{w \in \text{dom}(U)} r^{-|w|} < r^{-1}$ and let

$$s(n) := \begin{cases} 0, & \text{if } s_{\text{dom}(U)}(n) = 0, \\ r^{\lceil \log_r s_{\text{dom}(U)}(n) \rceil}, & \text{otherwise.} \end{cases}$$

Then $s : \mathbb{N} \to \mathbb{N}$ is left computable, $s \geq s_{\text{dom}(U)}$ and
$\sum_{n \in \mathbb{N}} s(n) \cdot r^n \leq 1$.
Example

There is a universal c.e. prefix code which is not the domain of a universal prefix-free machine.

Construction: Let \mathcal{U} be a universal prefix-free machine with $\sum_{w \in \text{dom}(\mathcal{U})} r^{-|w|} < r^{-1}$ and let

$$s(n) := \begin{cases} 0, & \text{if } s_{\text{dom}(\mathcal{U})}(n) = 0, \text{ and} \\ r^{\lceil \log_r s_{\text{dom}(\mathcal{U})}(n) \rceil}, & \text{otherwise.} \end{cases}$$

Then $s : \mathbb{N} \rightarrow \mathbb{N}$ is left computable, $s \geq s_{\text{dom}(\mathcal{U})}$ and $\sum_{n \in \mathbb{N}} s(n) \cdot r^n \leq 1$.

Thus there is a (universal) c.e. prefix code V such that $s_V = s$.

Note: The provided example is a theoretical construct and may not be applicable to practical scenarios.
Example

There is a universal c.e. prefix code which is not the domain of a universal prefix-free machine.

Construction: Let \mathcal{U} be a universal prefix-free machine with $\sum_{w \in \text{dom}(U)} r^{-|w|} < r^{-1}$ and let

$$s(n) := \begin{cases} 0, & \text{if } s_{\text{dom}(\mathcal{U})}(n) = 0, \\
 r^\left\lceil \log_r s_{\text{dom}(\mathcal{U})}(n) \right\rceil, & \text{otherwise.}
\end{cases}$$

Then $s : \mathbb{N} \rightarrow \mathbb{N}$ is left computable, $s \geq s_{\text{dom}(\mathcal{U})}$ and $\sum_{n \in \mathbb{N}} s(n) \cdot r^n \leq 1$.

Thus there is a (universal) c.e. prefix code V such that $s_V = s$.

Observe that $s_V(n, c)$ has the form $r^{m_1} + \cdots + r^{m_k}$ with $m_i \leq n + c$ for some $k \leq c + 1$. Hence $H(\langle n, s_V(n, c) \rangle) = O(\log n)$.
Proposition

If $V \subseteq X^*$ is a universal c.e. prefix code then the number

$$\Omega_V = \sum_{w \in V} r^{-|w|}$$

is a left computable Martin-Löf-random real.
Domains of plain machines

Theorem (Supersets of domains)

Let $W \subseteq X^*$ be computably enumerable. Then $W \supseteq \text{dom}(\mathcal{U})$ for a plain universal machine \mathcal{U} if and only if there is a $c \in \mathbb{N}$ such that

$$r^n \leq s_W(n, c) \text{ for all } n \in \mathbb{N}.$$
Domains of plain machines

Theorem (Supersets of domains)

Let $W \subseteq X^*$ be computably enumerable. Then $W \supseteq \text{dom}(\mathcal{U})$ for a plain universal machine \mathcal{U} if and only if there is a $c \in \mathbb{N}$ such that

$$r^n \leq s_W(n, c) \text{ for all } n \in \mathbb{N}.$$

Theorem (Domains of universal plain machines)

A computably enumerable set $W \subseteq X^*$ is a domain of a universal plain machine if and only if there is a constant $c \in \mathbb{N}$ such that

$$C(s_W(n, c)) \geq n \text{ for all } n \in \mathbb{N}.$$